The Independent Domination Polynomial of Lollipop Graphs and Barbell Graph

V. Sujin Flower, C. Benita and M. Jenisha Binu

Department of Mathematics, Holy Cross College (Autonomous), Nagercoil.

ABSTRACT

Let G = (V, E) be a graph of order n. The independent domination polynomial of G is the polynomial $D_i(G,x) = \sum_{j=\gamma_i(G)}^n d_i(G,j)x^j$, where $d_i(G,j)$ is the number of independent dominating sets of G of size j. In this paper, we study the independent domination polynomial of a graph. The independent domination polynomial of Barbell graph and some Lollipop graphs are obtained.

Keywords: Domination polynomial, independent domination polynomial.

Mathematics subject classification: 05C69 Field: Graph Theory; Subfield: Domination

1. Introduction

By a graph G = (V, E), we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology, we refer to Chartrand [2]. An independent set in a graph G is a set of pairwise non-adjacent vertices. A maximum independent set in G is a largest independent set and its size is called independence number of G and is denoted by $\alpha(G)$. A non-empty set $S \subseteq V(G)$ is a dominating set if every vertex in V(G) - S is adjacent to at least one vertex in S and the minimum cardinality of all dominating sets of G is called the domination number of G and is denoted by $\gamma(G)$.

Independent domination problem is one of the interest in graph theory. The theory of independent domination was formalized by Berge [1] and Ore [5] in 1962 and the independent domination number was introduced by Cockayne and Hedetniemi[3]. Graph polynomial is one of the algebraic representations for graph. Saeid Alikhani and Peng, Y.H. [6] have introduced the domination polynomial of a graph. The independent domination polynomial in graphs

introduced by P. M. Shivaswamy, N. D. Soner and Anwar Alwardi [7].

Theorem 1.1 A graph G of order n has domination number 1 if and only if G contains a vertex v of degree n-1.

2. The independent domination polynomial of Barbell graph and Lollipop graphs

Definition 2.1. The Barbell graph is the graph obtained by connecting two copies of complete graph by a bridge and it is denoted by B_n .

Definition 2.2. The Lollipop graph $L_{n,m}$ for $n \ge 3$ as a graph obtained by joining complete graph K_n to a path P_m with a bridge.

Theorem 2.3. Let $G = B_n$ be a Barbell graph of order 2n, the independent domination polynomial of B_n is $D_i(B_n, x) = (n^2 - 1)x^2$.

Proof. Let $G = B_n$ be a Barbell graph of order 2n and let

$$V(G) = \{v_1, v_2, \dots, v_{n-1}, v_n, v_{n+1}, v_{n+2}, \dots, v_{2n}\}.$$

Let us take $A = \{v_1, v_2, ..., v_{n-1}, v_n\}$ and $B = \{v_{n+1}, v_{n+2}, ..., v_{2n}\}$, where A and B are the vertices of the two copies of K_n . We observe that there are two vertices which can dominate all the remaining vertices of G, it follows that $\gamma_i(B_n) \leq 2$. To verify that $\gamma_i(B_n) \geq 2$, it is necessary to show that there is no dominating set with one vertex in G. There is no vertex of degree 2n-1, and so by Theorem 1.1 $\gamma_i(B_n) \geq 2$. Therefore, $\gamma_i(B_n) = 2$.

There are $(n^2 - 1)$ independent dominating sets of cardinality 2. This can be obtained by choosing a vertex v_n and one vertex from B other than v_{n+1} ; choosing the vertex v_{n+1} and one vertex from A other than v_n ; choosing one vertex from A other than v_n and one vertex from B other than v_{n+1} . Therefore, $d_i(B_n, 2) = (n^2 - 1)$. Also there are no other ways to find the independent dominating sets of cardinality more than 2. Hence $D_i(B_n, x) = (n^2 - 1)x^2$.

Theorem 2.4. Let $G \cong L_{n,1}$ be a Lollipop graph with (n+1) vertices. Then $D_i(G,x) = x + (n-1)x^2$.

Proof. Given $G \cong L_{n,1}$ is a Lollipop graph with (n+1) vertices say $V(G) = \{v_1, v_2, \dots, v_n, v_{n+1}\}$, where the vertices $v_i, 1 \le i \le n-1$, is of degree (n-1); v_n is of degree n and n and n and n is of degree n. Since the vertex n is of degree n, therefore by Theorem 1.1, n is of degree n and so n is of degree n. Now choose a vertex n is of degree n, therefore by Theorem 1.1, n is produces independent dominating sets of cardinality 2. This can be done in n ways. Therefore, n is produces independent dominating sets of cardinality 2. There are no other ways to find the independent dominating sets of cardinality 3 or more. Hence n is a Lollipop graph with n is a Lollipop graph with

Theorem 2.5. For any Lollipop graph $L_{n,2}$, the independent domination polynomial is $D_i(L_{n,2},x)=(2n-1)x^2$.

Proof. Let $G \cong L_{n,2}$ be a Lollipop graph with (n+2) vertices. We take the vertex set as $V(G) = \{v_1, v_2, \dots, v_n, v_{n+1}, v_{n+2}\}$ where the vertices $v_i, 1 \le i \le n-1$ is of degree (n-1); v_n is of degree n, v_{n+1} is of degree 2 and v_{n+2} is of degree 1.

Clearly the set $\{v_i, v_{n+2}\} \{v_i, v_{i+1}\}, \le i \le n$ gives a dominating set of cardinality 2, and so $\gamma_i(G) \le 2$. There is no vertex of degree n+1, therefore by Theorem 1.1, $\gamma_i(G) \ge 2$. Thus $\gamma_i(G) = 2$. Now choose a vertex v_{n+1} and one vertex from the complete graph K_n except the vertex v_n . Similarly choose a vertex v_{n+2} and one vertex from the complete graph K_n except the vertex v_n . Thus we get (2n-1) independent dominating sets of cardinality 2. Therefore, $d_i(G,2) = 2n-1$. Clearly there are no other independent dominating sets of cardinality greater than two. Hence $D_i(G,x) = (2n-1)x^2$.

Theorem 2.6. Let $G \cong L_{n,3}$ be a Lollipop graph with (n+3) vertices. Then the independent domination polynomial of G is $D_i(G,x) = (n+1)x^2 + (n-1)x^3$.

Proof. Let $G \cong L_{n,3}$ be a Lollipop graph with (n+3) vertices say $V(G) = \{v_1, v_2, ..., v_n, v_{n+1}, v_{n+2}, v_{n+3}\}$ where the vertices $v_i, 1 \le i \le n-1$ of degree (n-1); v_n is of degree (n+1); the vertices v_{n+1} and v_{n+2} are of degree two and the vertex v_{n+3} is of degree one. Obviously, there are two vertices which dominate all the remaining vertices. Thus $\gamma_i(G) = 2$.

Then the sets $\{v_n, v_{n+2}\}, \{v_n, v_{n+3}\}, \{v_1, v_{n+2}\}, \{v_2, v_{n+2}\}, \{v_3, v_{n+2}\}, \dots, \{v_{n-1}, v_{n+2}\}$ are the independent dominating sets of cardinality 2. Therefore, $d_i(G, 2) = n + 1$.

By definition, Let us assume that $V(K_n) = \{v_1, v_2, \dots, v_n\}$ and $V(P_3) = \{v_{n+1}, v_{n+2}, v_{n+3}\}$

Now, we choose a vertex v_i , $1 \le i \le n-1$ from $V(K_n)$ and two vertices v_{n+1} and v_{n+3} from $V(P_3)$. This produces the independent dominating sets of cardinality 3.

That is the sets $\{v_1, v_{n+1}, v_{n+3}\}, \{v_2, v_{n+1}, v_{n+3}\}, \dots, \{v_{n-1}, v_{n+1}, v_{n+3}\}.$

Therefore, $d_i(G,3) = n-1$. Finally, it is impossible to find the other independent dominating sets of cardinality more than 3. Hence $D_i(G,x) = (n+1)x^2 + (n-1)x^3$

Theorem 2.7. Let $G \cong L_{n,4}$ be a Lollipop graph with (n+4) vertices. Then the independent domination polynomial of G is $D_i(G,x) = x + (3n-2)x^3$.

Proof. Given $G \cong L_{n,4}$ a Lollipop graph. Label the vertices of G as $V(G) = \{v_1, v_2, ..., v_n, v_{n+1}, v_{n+2}, v_{n+3}, v_{n+4}\}$ where the vertices $v_i, 1 \le i \le n-1$ of degree (n-1); v_n is of degree (n+1); the vertices $v_{n+1}, v_{n+2}, and v_{n+3}$ are of degree two and the vertex v_{n+4} is of degree one.

By definition, let us take $V(K_n) = \{v_1, v_2, \dots, v_n\}$ and $V(P_4) = \{v_{n+1}, v_{n+2}, v_{n+3}, v_{n+4}\}$.

Clearly, the vertex set $\{v_n, v_{n+3}\}$ dominate all the remaining vertices.

Therefore, $\gamma_i(G) = 2$. Thus, $d_i(G, 1) = 1$

Now, we choose one vertex v_i ($1 \le i \le n-1$) from $V(K_n)$ and choose two vertices from $V(P_4)$ which are of degree 2; choose one vertex v_i ($1 \le i \le n-1$), one vertex is of degree 2 and one vertex of is degree one from $V(P_4)$; choose a vertex v_n , one vertex of degree 2 and a vertex of degree 1 from $V(P_4)$. This produces the independent dominating sets of cardinality 3.

That is the sets $\{v_1, v_{n+1}, v_{n+3}\}, \{v_2, v_{n+1}, v_{n+3}\}, \dots, \{v_{n-1}, v_{n+1}, v_{n+3}\}, \{v_1, v_{n+2}, v_{n+4}\}, \dots, \{v_{n-1}, v_{n+1}, v_{n+3}\}, \{v_1, v_{n+2}, v_{n+4}\}, \dots, \{v_{n-1}, v_{n+1}, v_{n+3}\}, \{v_1, v_{n+2}, v_{n+4}\}, \dots, \{v_{n+1}, v_{n+3}\}, \dots, \{v_{n+1}, v_{n+2}\}, \dots, \{v_{n+1},$

 $\{v_2, v_{n+2}, v_{n+4}\}, \dots, \{v_{n-1}, v_{n+2}, v_{n+4}\}, \{v_n, v_{n+2}, v_{n+4}\}$ are of cardinality 3.

Therefore, $d_i(G,3) = 3n - 2$. Clearly, there are no other independent dominating sets of cardinality 4 and more. Hence $D_i(G,x) = x + (3n-2)x^3$.

Theorem 2.8. For any Lollipop graph $L_{n,5}$, the independent domination polynomial is $D_i(L_{n,5},x) = 3nx^3 + (n-1)x^4$.

 $V(G) = \{v_1, v_2, ..., v_n, v_{n+1}, v_{n+2}, v_{n+3}, v_{n+4}, v_{n+5}\}$ where the vertices v_i , $1 \le i \le n-1$ is of degree (n+1); the vertices $v_{n+1}, v_{n+2}, v_{n+3}$ and v_{n+4} , are of degree 2 and v_{n+4} are of degree 1. Let us assume that $V(K_n) = \{v_1, v_2, ..., v_n\}$ and $V(P_5) = \{v_{n+1}, v_{n+2}, v_{n+3}, v_{n+4}, v_{n+5}\}$. Obviously, there are three vertices which dominate all the remaining vertices. Therefore, $V_i(V_i) = 0$ are $V_i(V_i) = 0$. Then the independent dominating sets of cardinality 3 can be obtained by choosing a vertex $v_{i+1} = 0$ except from $V(P_5)$ is of degree 2 and the vertex of degree 1 from $V(P_5)$; choose one vertex from $V(K_n) = 0$ except vertex v_n and two vertices from $V(P_5)$ of degree 2; choose a vertex v_i , $1 \le i \le n-1$ from $V(K_n)$, $v_n = 0$ extends $v_n = 0$. Also, the sets $v_n = 0$ degree 2 and one vertex from $v_n = 0$ degree 1. Therefore, $v_n = 0$ degree 2 and one vertex from $v_n = 0$ degree 1. Therefore, $v_n = 0$ degree 2 and one vertex from $v_n = 0$ degree 1. Therefore, $v_n = 0$ degree 2 and one vertex from $v_n = 0$ degree 1. Therefore, $v_n = 0$ degree 2 and one vertex from $v_n = 0$ degree 1. Therefore, $v_n = 0$ degree 2 and one vertex from $v_n = 0$ degree 1. Therefore, $v_n = 0$ degree 2 and one vertex from $v_n = 0$ degree 1. Therefore, $v_n = 0$ degree 2 and one vertex from $v_n = 0$ degree 1. Therefore, $v_n = 0$ degree 2 and one vertex from $v_n = 0$ degree 1. Therefore, $v_n = 0$ degree 2 and one vertex from $v_n = 0$ degree 2 and $v_n = 0$ degree 3 and $v_n = 0$ degree 3 and $v_n = 0$ degree 3 and $v_n = 0$ degree 4 and $v_n = 0$ degree 3 and $v_n = 0$ degree 3 and $v_n = 0$ degree 4 and $v_n = 0$ degree 3 and $v_n = 0$ degree 4 and $v_n = 0$ degree 4 and $v_n = 0$ degree 4 and $v_n = 0$ degree 5 and $v_n = 0$ degree 6 and $v_n = 0$ deg

Clearly, there are no other ways to find the other independent dominating sets of cardinality more than four. Hence $D_i(L_{n,5},x) = 3nx^3 + (n-1)x^4$.

Conclusion

The independent dominating polynomial of a graph is one of the algebraic representation of the graph and quality of any graph representation depend about what information can we get from that presentation about the graph.

References

- [1] Berge C, Theory of Graphs and its Applications, Methuen, London, 1962.
- [2] Chartrand G, Zhang P, Introduction to Graph Theory, McGraw-Hill. Kala mazoo, MI 2004.
- [3] Cockayne E.J, Hedetniemi S.T, Towards a theory of domination in graphs, Networks 7 (1977) 247-261.
- [4] Maylinda Purna, Kartika Dewit, Tri Atmojo Kusmayadi, On the partition dimension of a Lollipop graph and a generalized Jahangir graph, International Conference on Mathematics Education, Theory and application, 855 (2017) 012012.
- [5] Ore O, Theory of graphs, Amer. Math. Soc. Transl. 38 (1962) 206-212.
- [6] Saeid Alikhani, Yee-hock Peng, Introduction to Domination Polynomial of a Graph, Ars. Combin. pp 67, 14 May 2009.
- [7] Shivaswamy P. M, Soner N. D, Anwar Alwardi, Independent Dominating Polynomial in Graphs, International Journal of Scientific and Innovative Mathematical Research (IJSIMR), Volume 2, Issue 9, September 2014, 757-763.